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ABSTRACT

This report describes the technical accomplishments during
the second year (Phase II) of a research program on the "Development
of an Ultrasonic Method for the Nondestructive Evaluation of
Residual Stresses." This program has been sponsored by the Air
Force Office of Scientific Research under Grant No. AFOSR 77-3457
for research entitled "Interdisciplinary Study on Advanced NDI
Techniques." The primary goal of this research program has been
the utilization of the temperature dependence of ultrasonic velocity
for the nondestructive evaluation of residual stresses in solids.
Basically, the temperature dependences of the elastic constants of
a solid are due to the anharmonic nature of the crystal lattice,
and are directly related to the coefficients of higher-order terms
in the strain energy function. A measure of the temperature
dependence of the ultrasonic velocity can, therefore, be used to
evaluate the state of internal stress in the solid.

During this second year funded for the period 30 September
1978 through 29 September 1979, the sensitivity of the temperature
dependence of ultrasonic longitudinal velocity to applied elastic
stresses (below yielding) has been studied. The study is performed
on two types of commercial aluminum (2024-0 and 6063-T4), and one
type of commercial copper (CDA 110). Again, the results of this
study show that the velocity changes linearly with temperature,
and the slope of the linear relationship decreases linearly as the
amount of applied stress is increased within the elastic limit of

the specimen under investigation. The maximum decrease in the
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temperature dependence in aluminum and copper are respectively

23% which occurred at a stress of 96 MPA, and 6% which occurred
at 180 MPA.

The results obtained on aluminum are then used to determine
the change as a function of distance of the tangential component of
the stresses developed when an aluminum rod is shrunk fit into
a slightly smaller eccentric hole drilled in an aluminum disc.
Excellent agreement is obtained between the stress distribution
determined by the temperature dependence method and that computed

using a partial differentiation from a single stress function.







INTRODUCTION

l. General Considerations

Residual stresses are those contained in a body which has no
external traction or other sources of stress, such as thermal
gradients or body forces. When the body is externally loaded,
these stresses are called internal stresses, and accordingly,
residual stresses may be considered as a special case for vanishing
external loads. Residual stresses result from non-uniform plastic E
deformation which includes cold working, forming, forging, heat
treatment, etc. Their presence in manufactured components plays “

an important role in determining the behavior of the component when

it is subjected to service loads and environment.

It is important tb distinguish between two kinds of residual
stresses, namely, the macroscopic stresses which extend over dis-
tances of the order of millimeters or greater, and the microscopic
stresses which act over short distances and are highly localized
from point-to-pointl. The macroscopic residual stresses vary con-
tinuously through the volume of the body and at any point are the
combination of the components of stresses in the three principal
axes. The microscopic residual stresses (internal stresses) vary

greatly from grain to grain and are important to dislocation motion

and structure which control many of the material properties. From

PSR-t

dislocation theory, it is known that internal stress is proportional
to the squaro root of the dislocation density and is also related
to the flow stress of the solid2'3.

Only in the case of surface stresses in components made of

crystalline materials, can nondestructive evaluation of residual
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stresses be performed by the X-ray diffraction4. Although con-
siderably improved in the last ten years, this method still suffers
from serious problems which severely restrict its applications.
Ultrasonic methods appear to hold the best promise in measurements

of the bulk residual stresses in both crystalline and non-crystalline
materialss. At present, there are three approaches, namely :

8,9 ih which

dispersionG, birefringence7, and harmonic generation
ultrasonic techniques are employed. All these approaches are
believed to utilize the anharmonic properties in solids; however,

the exact mechanism in each is not yet established.

2. Theoretical Background

Basically, the temperature dependences of the elastic constants
are due to the anharmonic nature of the crystal lattice, and can be
related to the pressure dependences of these constants. If we

consider the isothermal bulk modulus B,, to be a function of pressure

T
and temperature, it follows that10
3By | _ [BBT _aBT‘]
3P 'T BBy LdT |v eT IpJ, (1)
11

where B is the volume coefficient of thermal expansion. Swenson
has show empirically that for many materials

BBT

°5p = 0, (2)
aT

v

and it can also be shown by differentiating (BS - BT) that

T (3)
to an accuracy of a few percent. Thus it follows that if Swenson's

rule is correct,
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to an accuracy of a few percent. The right-hand side can be cal- i
culated from the measurements of the temperature dependence of the ‘
second-order elastic constants. The left-hand side is calculated

from the third-order elastic constants cijk' and equ, (4) is then
expressed aslz,
2B £ [°111 + 3¢y, + 3053 + 2"'123] (5)

3T
13,14

More rigorous relationships can be derived for the temperature

dependence of the longitudinal or the shear modulus which is related

1 to the temperature dependence of the ultrasonic velocity v as,

g oM = 5 n v
é 3T 3T (6)

2 From this general argument, it can be seen that the temperature

dependence of the ultrasonic velocity (Longitudinal or shear) is a

1
measure of the anharmonic effects generated when the solid is sub- |
|
jected to a stress. A wide range of values for the apparent third
order elastic constants were obtained in copper when measurements :

were made on specimens with different dislocation contributionslo.

Changes in the anharmonic properties due to the presence of internal
) stresses can therefore be detected by the changes in the slope of
| the relationship between the ultrasonic velocity and the temperaturels'IG.
This slope can be determined with a high accuracy as its value

depends only on measurements of the relative changes in the velocity

.

and not on the absolute values.
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EXPERIMENTAL APPARATUS AND PROCEDURE

2.1 Specimen Preparation

Commercial aluminum of the types (2024-0 and 6063-T4) and
copper of the type (CDA 110) are selected for the present investi-
gation. Specimens were made in the form of rods of 0.95 cm in
diameter and 1.29 cm in length, to be suitable for ultrasonic
measurements. The two faces of each specimen are then polished to
be flat and parallel to within two thousandths of a centimeter over
the whole surface.

Some of the specimens, both aluminum type (2024-0) and copper
type (CDA 110), were placed in a vacuum furnace for annealing
before ultrasonic measurements were undertaken. They were kept in
the furnace for four hours at a temperature of 450°C and a pressure

6

of 10" ° Torr. This is followed by furnace cooling to provide stress

relief to these specimens. The rest of the aluminum type (6063-T4)

and the copper type (CDA 110) specimens were employed as received.




2.2 Stress-induced System

The equipment used to apply external stresses on the specimens
is shown in Fig. (2.1). It consists of a split collar of inner
diameter and height closely equal to those of the specimens used.

The collar was made of brass in order to minimize the effect of
differences in thermal expansion during the temperature range

(280° - 200°K) covered in the temperature dependence measurements.
In addition, few drops of high viscosity oil (46500 cs.) was
introduced between the screws and the collar, which proved to be
effective in keeping the stress applied by tightening the screws of
the collar, and simultaneously measuring the change in the diameter
of the specimen.

The change in the diameter of the specimen due to the appli-
cation of stress is measured by means of a shadow-graph purchaesd
from Nippon Kogaku K. K. company in Japan. The main principle of the
shadow-graph is that the transmittance coefficient is different for
different material, and thus the interface between the specimen
(aluminum or copper) and the collar (brass) is obviously distinguish-
ed. A change in the diameter of the specimen can be visualized
and accurately recorded on the screen of shadow-graph with an

accuracy of + 5%.




BRASS HOLDER

Fig. (2.1) Holder used to apply compressive stress to
specimen.
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2.3 Pulse Echo Overlap Method and Apparatus

The method utilized in the ultrasonic velocity measurements
is the "Pulse Echo Overlap" (P. E. 0.) which was originally developed
by May (17) and further described by Papadakis (18). In this
method, a single transducer acts alternately as a transmitting
and receiving transducer. At regular intervals of time, the rf
pulsed oscillator imposes a short burst of high-frequency alter-
nating voltage on the transducer which is coupled to the specimen.
Through the piezoelectric effect of the quartz transducer, this
pulse of alternating voltage converts into a pulse of mechanical
vibration having essentially the same frequency as that imposed
by the alternating voltage. These stress waves travel through
the specimen and return as they encounter a reflecting surface
that is perpendicular to the direction of propagation. Upon reach-
ing the transducer through the couplant, the returning pulse causes
the transducer to vibrate, and induces an alternating electric
voltage which is instantaneously amplified and shown on the oscillo-
scope.

Fig. (2.2) displays the block diagram of the apparatus used
in this investigation. A pulse of approximately 1 u sec duration
of variable pulse-repetition rate is generated by the ultrasonic
generator and impressed on a transducer of fundamental frequency

10 MHz which is acoustically bound to the specimen. The reflected

-9-
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rf echoes are received by the same transducer, amplified, detected,

filtered, and then displayed on the screen of the oscilloscope.

In general, the whole set of instrumentation can be considered

as a delay-line technique which means that the delay line produces
an exactly overlapped picture of the two 10 MHz modulated echoes
only when the triggering frequency rate of the oscilloscope is

equal to the riciprocal of the round trip time of the ultrasonic
pulse traveling in the specimen. It also means that each delayed
time period critically equals the time period between the two echoes,
when they are superimposed. This time is determined by the frequency
of the pulsed oscillator when the correct cycle-to-cycle match is
achieved. This frequency is read on the electronic counter to an
accuracy of 1 part in 105. The ultrasonic velocity is then cal-
culated using the relationship V=21f, where 1 is the length of the
specimen. X-cut or Y-cut quartz transducers of 0.125 inch diameter
and of fundamental frequency 10 MHz are used in this study. The
X-cut transducers are used to produce longitudinal (compressional)
waves, while Y-cut transducers are used to produce transverse

(shear) waves. The transducer is coupled to the test specimen by

a thin layer of highly elastic viscous Nonaq stopcock grease.

~11-




2.4 Temperature Control System

The temperature control system includes four main parts; namely,

cryogenic dewer, vaporization heater, mechanical vacuum pump and
potentiometer. All these combinations are to ensure extremely

small temperature gradients, high vaccum insulation and very accurate
temperature measured over the range between 350 and 4.2°K.

The cryogenic dewer was obtained from the Andonian Cryogenics,
Inc., Newtonville, Massachusetts. A diagram of this cooling system
is illustrated in Fig. (2.3). During the test, the specimen and
the split collar is mounted on the sample-mounting platform (U)
and inserted to the sample zone in the dewer. Liquid nitrogen is
added directly to the helium reservoir which passes through the
capillary tube to the lower end of the sample chamber. The dewer
also has a heat exchanger (N) and a thermocouple (V) which provide
the adjustment and the measurement of the temperature. Temperature
control of the whole system is obtained by establishing a slight
excess cooling rate with the throttle valve, and adding just
sufficient electrical power to the vaporization heat to bring the
sample to the desired temperature level. The potentiometer along
with the copper-constantan thermocouple enabled the measurement

of the temperature to an accuracy of +0.1°K.

-12-
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Sample Holder
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Sample
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2.5 Measurement Procedure

Several steps are followed to obtain the temperature dependence

of the ultrasonic velocity ( dV ). The procedure is as follows:

a)

b)

c)

d)

ar
With the specimen properly located in the sample holder,

the apparatus (previously described) is adjusted to transmit
the rf pulses to the transducer. The reflected echo-train
is displayed on the screen of the oscilloscope and two

of the echoes are then chosen and overlapped.

The sample holder is then placed inside the cryogenic

system which is used to maintain the temperature of the
specimen at any desired value between 200 and 300°K. Liquid
nitrogen is then added to lower the temperature of the
specimen.

The liquid nitrogen is allowed to flow inside the specimen
chamber where the temperature of the specimen is checked

by means of the copper-constantan thermocouple attached to
the base of the sample holder.

After the specimen has been cooled to the desired tempera-
ture, no more nitrogen is allowed into the specimen chamber.
The voltage of the power supply, connected to the 5 watt
resistor (vaporization heater) at the inside bottom of the

specimen chamber, is then turned on. ?he power input is

regulated so that a rate of heating of 1 degree per 4

minutes is maintained.




‘n e)

.

h)

s

i)

0'.’

The two originally selected echoes are adjusted to overlap
on the screen of the oscilloscope and readings of tempera-
ture and overlap frequency are recorded. As the temperature
of the specimen increases, changes in velocity are directly
detected from the phase shift of the two displayed echoes.
After approximately fifteen minutes, the two echoes are
overlapped again by adjusting the frequency of the C. W,
oscillator. The frequency as well as the temperature are
then recorded.

The previous step is repeated several times as the specimen
is allowed to warm up.

At any fixed temperature, the velocity is calculated by

using the relation,

vV=21Ff (2.1)

where 1 is the length of the specimen and £ is the fre-
quency. When the measurements are made using an X-cut
transducer, equation (2.1) gives longitudinal velocities,
while transverse velocities are obtained using a Y-cut
transducer. The accuracy in measuring changes in the
ultrasonic velocity is estimated to be 1 part in 105.
The data obtained for velocity and temperature are then

processed through a computer (IBM 360) to acquire the slope

~16-
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SR TR ey BT

k)

—

of this relationship using a least mean gﬁﬁafe{ The computer

program used for the determination of the slope ig\shawa\
in Appendix I.

Before another set of velocity measurements are made, the
specimen is placed into the brass collar. High viscosity
oil (46500 cs.) is put between the screws at the sides of
the walls and the collar in order to keep the applied

stress uniform and constant during the measurement. The

two screws are tightened in order to apply the compressional
stress on the specimen. The change in the diameter of the
specimen, Ad, is measured by the shadow-graph and the

amount of applied stress ¢ is calculated using the relation-

ship

c =."’E x»-—Adg- (2.2)

where E is the Young's modulus and d is the original dia-
meter of the specimen.

Steps (a) through (j) are now repeated to obtain a new set
of data while the specimen is subjected to the stress.

After ultrasonic measurements are finished, the diameter

of the specimen is measured again to ensure that the applied
stress is within the elastic limit.

The specimen is then subjected to a higher stress level,
however, within the elastic limit, and a new run is made,

following the same procedure.

-17-
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\\\\\mgasurements are made on the same specimen, in order to determine

2.6 Examples of Measurements

Table (2.1) contains typical examples of the results represent- i
ing the variations of the longitudinal ultrasonic velocity in
aluminum as a function of temperature. The experiment is performed
while the specimen is subjected to zero stress. The two sets of 1

~

thé\;ép{gguctibility of the values of the temperature dependence.

The table\zﬁéiggsf the values of the longitudinal velocity (Y),
measured at tempe;Etu;gs ranging between 180° to 260°K (X). Also
included in the table a;a\the recalculated longitudinal velocity
(column 3), the deviation (coiﬁma\?) and the deviation squared
(column 5). These quantities are ébtained as the computer data
output resulting from the least mean square calculations.

The data obtained from the two runs yield values of the

best fit for the slope of the temperature dependence of the ultra-
sonic longitudinal velocity (dVL/dT). These values are -0.108

and -0.111 in units of m/s.K, for the first and the second run
respectively. From these data, one can see that the measurements
of the temperature dependence of the ultrasonic velocity can be
obtained with an accuracy of +2%. Changes in (%%) bigger than

2% could be detected and measured.

~18~
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RESULTS

3.1 Aluminum

The velocityvof longitudinal ultrasonic waves propagating
along the axis of the rod was measured as a function of temperature
on five aluminum specimens denoted A, B, C, D and E. The measure-
ments were undertaken while the specimens were subjected to various
amounts of compressional stresses applied in a plane perpendicular
to the direction of propagation of the ultrasonic waves. Typical
examples of the results obtained on specimen E are shown in Fig.
(3.1), where the longitudinal velocity V& is plotted vs termperature
T, at the stresses 0, 27.6, 46.2 and 75.8 MPa. From these data,
one can see that the longitudinal velocity increases linearly with
the lowering of temperature, and the slope of this linear relation-
ship between longitudinal velocity and temperature decreases as
the applied stress ¢ is increased. The absolute value of the velocity,

however, is increased with the increase of the applied stress, in-

dicating that the specimen becomes stiffer when it is subjected to
3 compressional stresses. The least mean square method was used

to determine the slope of the straight line dV which best fits
daT
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Fig. (3.1) Effect of applied compressive stress on the
temperature dependence of ultrasonic longi-
tudinal velocity in aluminum, Stress is applied
in a plane perpendicular to the direction of
propagation of the ultrasonic waves




the experimental data representing V vs T. The accuracy in deter-
mining the temperature dependence of longitudinal velocity by this
method is estimated to be + 2%.

Table (3.1) lists the results obtained on the five aluminum
specimens investigated in this work. The table includes the values
of the temperature dependence of the longitudinal velocity, measured
at stresses ranging between zero and the yield stress of the specimen.
Because the values of the temperature dependence of ultrasonic longi-~
tudinal velocity at zero stress were found to vary among specimens
investigated, the relative change in the temperature dependence,

A, due to the application of stress was calculated, and its value
are listed in column 4 of Table (3.1). These values of A are cal-

culated from the relationship,

av av ]
-9V,
A a=[§T ]‘9 [@r g
""4.] (3.1)
dT |o

The variations in the temperature dependence measured on these
specimens at zero stress are believed to be due to the differences

in residual stresses in these specimens, even after annealing.

- Aslo included in this table, is the value of the temperature de-
* pendence of the longitudinal velocity at zero stress obtained on

annealed pure aluminum (99.999%) (15) which is smaller than any

*
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Table (3.1) Effect of applied compressive stress on the tempera-
b - ture dependence of ultrasonic longitudinal velocity in aluminum.

Stress is applied in a plane perpendicular to direction of

propagation.
: av, 1
Specimen Applied Stress - _~ (m/s.K) A %
(MPa) aT
A (2024-0) 0.0 0.923 0.0
21.4 0.878 4.9 P
‘ B (2024-0) 0.0 0.957 0.0
E 37.2 0.856 10.6
g . C (2024-0) 0.0 1.007 0.0
F 44.1 0.908 9.8 ‘
D (6063-T4) 0.0 1.111 0.0
94.5 0.866 22.1
E (6063-T4) 0.0 1.066 0.0
27.6 1.008 5.5
46.2 0.955 10.4
75.8 0.875 17.9
Pure, Annealed 0.0 0.847 |
Ref. (15) ;
-23- |
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of the temperature dependences measured on these commercial specimens
at zero stress.

The results in Table (3.1) indicate that the temperature de-
pendence of longitudinal velocity decreases as the amount of
compressional stress is increased. The relative changes in the
temperature dependence, obtained on all five specimens investigated,
are plotted in Fig. (3.2), as a function of stress applied. The
plot shows that all points lie on a straight line which passes
through the origin. This indicates that, regardless of the type
of aluminum used, the relative change in the measured temperature
dependence is a linear function of the applied stress. The slope

3 per MPa, which yields

of this linear relationship is 2.4 x 10~
a maximum change of 23% at a gtress of 96 MPa.

The effect of external stress on the temperature dependence
of the shear velocity ;;g was investigated in the aluminum
specimens D and E. The measurements were performed when the ultra-
sonic waves were propagated along the axis of the specimen and
polarized in the plane in which the stress was applied. Typical
examples of the results obtained on specimen E are shown in Fig.
(3.3), where the shear velocity Vs is plotted vs temperature T,
at stresses 0, 40.7 and 67.0 MPa. Again, the shear velocity
increases linearly as the temperature is lowered. However, the

slopes of the velocity as a function of temperature remain unchanged

as the amount of external stress is changed. The results of the

-24-
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Fig. (3.3) rffect of applied compressive stress on the temperature
dependence of ultrasonic shear velocity in aluminum,

S(rnss_iﬂ applied in a plane perpendicular to the direc-
tion of propagation of the ultrasonic waves
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measurements obtained on specimens D and E are included in Table

(3.2), along with the value of the temperature dependence of shear
velocity at zero stress, obtained on pure annealed aluminum, in an
earlier study (15). The relative changes in the temperature depend-
ence of the shear velocity, acquired on the two specimens D and E,
are plotted in Fig. (3.4), as a function of stress applied. From
the results, it is seen that, within the experimental error, +2%,
found in determining the temperature dependence, the temperature
dependence of shear velocity in aluminum remains unchanged when
external elastic stress is applied in a plane which contains the
polarization vector of the ultrasonic waves. This may lead to the
conclusion that changes in the temperature dependence of the ultra-
sonic velocity occur only when the directions of stress and polari-

zation are perpendicular to each other.

-27-
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Table (3.2) Effect of applied compressive stress on the tempera-

ture dependence of ultrasonic shear velocity in aluminum.

Stress

is applied in a plane perpendicular to the propagation direction.

Specimen

D (6063-T4)

E (6063-T4)

Pure, Annealed
Ref. (15)

Applied Stress

(MPa)

0.0
72.4
96.0

0.0
40.7

67.0

0.0

-28-

av
- _S(m/s. K)
dar

0.737
0.751
0.758
0.767
0.768
0.748

0.749

4 %

0.0
1.9
2.8
0.0
0.0

-2.5
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3.2 Copper
Five copper specimens designated A, B, C, D and E are also

investigated in this work. Two of these five specimens were in
the annealed state, before any velocity measurements were undertaken,
while the other three were used as received. Due to the excessive
scattering of the ultrasonic shear waves, only the velocity of
longitudinal waves are measured on the copper specimens. This
scattering phenomena could be overcome by decreasing the frequency
of operation, however,all the present measurements have been made
at a frequency of 10 MHz which is the lowest frequency available
in the equipment used. Typical examples of the relative changes in
longitudinal velocity VL as a function of temperature T are shown
in Fig. (3.5). The measurements are made on specimen C at the
stresses 0, 100.7 and 179.9 MPa in the temperature range between
180 and 260°K. From this data, it can be seen that the longitudinal
velocity increases linearly with the lowering of temperature, and
the slope of this linear relationship between longitudinal velocity
and temperature decrease as the applied stress o is increased.
This occurs when the applied stress is within the elastic limit of
the specimen.

Table (3.3) contains the results of the temperature dependence
of ultrasonic longitudinal velocity obtained on the five copper
specimens when they were subjected to external stress applied in

a plane perpendicular to the direction of wave propagation. Also




| ] | | |
COPPER CDA 110
SPECIMEN C
D=
=
O
9
L
>
-
g
P
o
>
o
()
<
S
o 179.9 MPa
o 100.7 MPa
¢ 0.0 MPa
| I I | I
160 {80 200 220 240 260
TEMPERATURE [°K]
Fig. (3.5) Effect of applied compressive stress on the temperature dependence

of ultrasonic longitudinal velocity in copper.
in a plane perpendicular to the direction of propagation of the

ultrasonic waves

~-3]1=

Stress is applied




E

TR TR e et

0‘.

F
.
i
f
!
b

Tl MR Ao R i A N b i R < NN i€ . 5 0 A . Ik e O L A 1 TR O

Table (3.3) Effect of applied compressive stress on the tempera-

ture dependence of ultrasonic longitudinal velocity in copper.

Stress is applied in a plane perpendicular to propagation direction.

Specimen

A (CDA 110)
Annealed

B (CDA 110)
Annealed

C (CDA 110)

D (CpDA 110)

E (CDA 110)

Pure, Annealed
Ref. (16)

0.

23.
205,

0.

117,
0.
100.
179.
0.
59.
131,
0.

124,

0.

0

4
4
0

2
0
7
9
0
3
0
0
1

Applied Stress
(MPa)

~32-

av

- _ *m/s. k)

aTt
0.487

0.484
0.463

0.486

0.468
0.557
0.541
0.523
0.509
0.502
0.496
0.497
0.485

0.495

A%

0.0

3.6
0.0
2.9
6.1
0.0
1.4
2.5
0.0
2.9




included in this table is the value of the temperature dependence

of longitudinal velocity at zero stress measured on pure (99,999%)
annealed copper (16). In this case the temperature dependence of
longitudinal velocity at zero stress is approximately equal to those
obtained on commercial annealed specimens, but considerably lower
than the temperature dependence determined on the as received speci-
mens.

Similar to the behavior observed in aluminum, the temperature
dependence of the ultrasonic longitudinal velocity in copper is
found to decrease as the applied stress is increased. The decrease
in the temperature dependence for the same stress is, however, much
smaller in copper than in aluminum. A plot of the relative change

in the temperature dependence of longitudinal velocity as a function

of stress for all five copper specimens, is shown in Fig. (3.6).
Again, a straight line which passes through the origin, is found
to represent the relative changes in the temperature dependence of
longitudinal velocity g;— vs stress o. The maximum value of A
obtained is about 6% at a stress of 180 MPa. The slope of the

-3
straight line is 0.25 x 10 per MPa which is approximately an order

of magnitude smaller than that calculated from aluminum data.

-33-
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DISCUSSION AND APPLICATION

4.1 Discussion of Results

The behavior of the temperature dependence of the ultrasonic
velocity as a function of the applied elastic stress for both ]
aluminum Fig. (3.2) and copper Fig. (3.6) suggests that the tempera-
ture dependence of the longitudinal ultrasonic velocity measured

at an applied compressional stress can be represented by

g.z\ - lav
ar LdT o =Ko
av
dT] o (4.1)

where g%j} is the temperature dependence at zero stress, and K
is a constagt equal to 2.4 x 1073 or 0.25 x 1073 per MPa for aluminum
or copper respectively. Egquation (4.1) relates the relative
difference of the temperature dependence of the longitudinal velo-
city with and without stress as a function of the applied stress.

The use of eguation (4.1) in the determination of unknown
stresses in a specimen, requires the knowledge of the temperature

dependence of the ultrasonic velocity at zero stress in the material

from which the specimen was made. Theoretical calculations of the

value of the temperature dependence of the ultrasonic velocity at

-35-
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zero stress are not available at present. This means that values
of this parameter should be either determined independently by a
separate experiment, or estimated from other appropriate results.
Measurements of the temperature dependence of ultrasonic velocity
at zero stress, made on different types of specimens Table (3.1)
and (3.2) have shown that this quantity differs considerably with
heat treatment, and to a lesser extent from one specimen to the
other. These differences are mainly due to the variations of inter-
nal stresses in specimens, even when they are given the same heat
treatment. Published data on the changes of the elastic modulii
with temperature (including those measured on single crystals) are
found to yield temperature dependences which vary considerably
among various researchers (19).

Measurements made on the same specimens under simular conditions,
have shown that the slope of ultrasonic velocity vs temperature can
be determined with an accuracy of 42%. This quantity along with
Fig. (3.2) and Fig. (3.6) yield an accuracy of +8 MPa and +25 MPa
in determining bulk stresses in aluminum and copper respectively,
using the temperature dependence method. These values compare
favorably with 14 MPa reported by Smith et al. (20) using a
system for acoustoelastic stress analysis which is based on
pulse-echo-overlap transit time measurements. They are, however,
much larger than those (3.5 MPa) determined by Hsu (21) in his
measurements on aluminum plates using the acoustic birefringence

method. The accuracy reported by Blinka and Sachse (22) in their

-36-
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use of interference effects of the out-of-phase polarized waves
(0.25 MPa), to determine principal stress differences is of
instrument precision and does not describe the accuracy of the
method itself.

When the stress applied to the specimen was high enough to
cause yielding, the temperature dependence of the longitudinal
velocity was found to increase instead of further decreasing. Thais
occured in both aluminum and copper specimens, where the increase
in the temperature dependence of longitudinal velocity is increased
as long as the stress applied on the specimen was beyond the elastic
limits. These results are consistent with those obtained by Salama
and Ippolito (23) in their study on the effect of plastic deformation

on the temperature dependence of the ultrasonic velocity.

-37=




4.2 Determination of Unknown Stresses

In order to examine the possibility of using equation (4.1)
to determine unknown stresses, the shrink fit method was employed
to introduce known stress distributions in a disc made of type
6063-T4 aluminum. The diameter of the disc was 3.50 cm while its
thickness was 0.79 cm. An aluminum rod of the same material was
shrunk fit into a hole drilled in the center of the disc. The
diameter of the hole was 0.50 cm, while that of the rod was 0.0064
cm larger. In order to fit into the cryogenic system employed to
control the temperature of the system, the disc was then machined

to its final shape shown in fig. (4.1).

a) Temperature Dependences

The stress generated in the disc due to the presence of the
rod can be represented by an axial component O, 2 radial component

G » and a tangential component o,, which are related by the relation-

T
ship, o, = v(or + oT), where v is the Poisson's ratio. Three
independent measurements are undertaken to determine the values of
these components: the temperature dependence of the longitudinal
and the two shear velocities of ultrasonic waves propagating along
the thickness of the disc. The two shear velocities are measured
with the polarization vector parallel to and perpendicular to the
radinl line connecting the center of the rod and the tip of the

circumference of the disc. These measurements, evaluate the

resultant of the stress components acting in a cylinder of cross-

~38-
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sectional area equal to that of the transducer used in the measure-
ments (0.08 cmz). and of length equal to the thickness of the disc
(0.79 cm).

The results of the temperature dependences of the longitudinal
and the two shear velocities (dVL/dT), (st/dT)//, and (st/d'l‘)-L
as a function of distance ranging between 0.45 and 1.60 cm are listed
in Table (4.1). These distances are measured between the centers
of the rod and the transducers. From this table, one can see that
the values of the temperature dependence of longitudinal velocity
at the four locations are equal to within +2%. This shows that
the stress component measured by the temperature dependence of the
longitudinal velocity, remains unchanged over the distance where
the measurements were performed. Analysis of stresses in the disc
used in the present investigation indicates that only the axial
component remains constant over that distance.

The data listed in Table (4.1) also show that the values of
the temperature dependences of the two shear velocities obtained
at the same distance, are equal to within +1%. This indicates that
the stress components measured by these two temperature dependences
at the same distance from the center of the rod, should be equal.
As a function of distance, however, the values of either of the
shear temperature dependences change considerably. Close to the
edge of the disc, where the radial or the tangential stress component

is expected to be small, the temperature dependence is the largest,

O

< b st
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Table (4.1).

velocity polarized perpendicular to the radial direction. |

The temperature dependences of the ultrasonic longi-
av

tudinal velocity ( 3

T
parallel to the radial direction (

av

dT

=)

), the ultrasonic shear velocity polarized

. and the ultrasonic shear
av
daT
as a function of the radial distance R in the aluminum disc shown

in Fig. (4.1).

Radial Temperature dependence of ultrasonic velocity
Distance

R (cm) - (av,/4r) -{av_/aTy , / - (av,_/aT) .
0.45 1.123 0.821 0.831

0.70 - 0.770 0.756

0.95 1.088 0.868 0.849

1.15 1.113 - -

1.60 1.107 0.914 0.899
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and equal to about -0.9 m/s.K. This value decreases as the distance

from the cneter of the rod is decreased, and reaches a minimum around
0.7 cm. As the distance from the rod is further decreased, the
value of the temperature dependence of shear velocity is increased

again.
b) Calculations of Tangential Stress Component

The stress distribution in the disc shown in Fig. (4.1), can
be approximated by that arising in a circular disc with eccentric
circular hole shown in Fig. (4.2). This case has been discussed by
Jeffery and Filon (24), who showed, that, in the two-dimensional
case, the stresses may be derived by the partial differentiation
from a single stress function. In the absence of body forces, this
stress function x satisfies the linear partial differential equation

of the fourth order,
vl =0 (4.2)

4 , . . .
where v = V2.v2, and v2 is the two~dimensional Laplacian

2 2
62/ax + 3 /ayz-

Michell (25) gave the general form of the stress-function in

polar coordinates, for which the co-ordinate curves are co-axial
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' fig. (4.2) 1he civcular disc with an eccentric hole
under inside radial pressure
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circles, and thus opened the way for the solution of the problem
of a circular disc with an eccentric circular hole. His stress

function is expressed as

4 4 4 2 2 .
d d 3 d d (hy) = 0

Y2 vt Ty -2 v +1) X _:
da da 3B 38 Gl 3B (4.3) !

where the bipolar coordinates a, B8, are defined by

o + i = log x + i(y + a)
x + i(y - a)

(4.4)

In the above relation, x and y are Cartesian co-ordinates, a is a

positive real length, and h is a constant.

Jeffery solved equation (4.3) to obtain the distribution of
the tangential stress in a circular disc with an eccentric circular
hole (Fig. 4.2), subjected to inside radial pressure P. His solution |

may be expressed as

2.2 2 2 2,2
R} [RZ(RZ ~ 2d cos#) - (R1 - 4a%) ;

®2 + ®%) [Rg - (R, +d)2] [Rg - R - d)z.] (4.5)

where Rl’ R2 are the radii of eccentric circles, d is the distance

apart of their centres, 6 is the angle counterclockwise from the

OT = 2P

principle axis. For a rod shrunk fit into the inside circle, P

-44-
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may be calculated from the relationship (26)

. URy (1 + v)e
_—-——-2————

Ry (4.6)
where u is the shear modulus, v is the Poisson's ratio, and ¢ k
is the difference between the diameters of the rod and the inside
circle.

Using the dimensions of R, and d shown in Fig. (4.1), along

5

with a shear modulus y = 0.26 x 10 ° MPa and a Poisson's ratio

v = 0,346, the tangential component of the stress o,, was calculated

T
as a function of the radial distance. The calculation was made by
using equation (4.5), where for § = 0", R2 takes values from O

to R, and for § = 1800, R, takes values from 0 to (d1 - Rl).

The results are plotted in Fig. (4.1). From this plot one can

see that the tangential component in this disc is compressive near
the rod, equal to zero at approximately 0.4 cm, and becomes tensile
at larger distances. Between 0.4 cm and the circumference of the
disc, this component has a maximum at 0.6 cm of approximately 95 MPa,
which decreases to 1.4 MPa at the circumference. The values of the
tangential stress component at the locations where ultrasonic
measurements were undertaken, are listed in Table (4.2). Also
included in this table, are the values of the temperature dependence

of the shear velocity, measured when the polarization vector was

perpendicular to the radial direction. At 1.6 cm (close to the

-45-
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circumference of the disc), (st/dT)* is -0.899 m/s. K and the
value of the tangential component is 1.4 MPa. Considering this
value of temperature dependence (-0.899 m/s. K) corresponds to the
stress calculated at this point (1.4 MPa), the values of the tan-
gential component at the other three locations are calculated using
equation (4.1), and the measured values of the temperature depend-
ence at these location. These values are included in column 4

of Table (4.2).

c) Comparison between Experiment and Calculations

From Table (4.2) and Fig. (4.1l), one can see that the agreement
between the values of the tangential component, and those cal-
culated using Jeffery's equations is very good considering the
approximations made in calculating these stresses. The deviation
between the calculated stress and that determined from experiment
becomes larger at distances close to the eccentric rod. It is
probable that this gradual discrepancy is due to the fact that the
cross-sectional area of the transducer (0.08 cmz) used in the
measurements determines the average tangential stress components
where the slopes of the stress distribution curve change abruptly.

Unfortunately, no comparison could be made between radial
stresses determined from the temperature dependence measurements

and those calculated from elasticity theory, which are difficult

to compute for an eccentric hole in a disc. Nevertheless, the




jable (4.2). Comparison between the calculated values of the

tangential stress component and those determined using the ex-

perimental values of (dvs/dT)l

dv
padial _(d1§)| (m/s.K) Applied Stress Applied Stress
histance L (Calculated in (Measured in
£ (cm) MPa) MPa) :
0.45 0.831 34.0 44.8 ;

0.70 0.756 74.4 69.0




values of (dVS/dT) listed in Table (4.2), indicate that the

//
distribution of the radial stress component along the axis O0X (Pig.
4.1) will be similar to that of the tangential component. At the
circumference, o will be equal to zero, increases to a maximum
compressive value at R = 0.7 cm, an then drops sharply to zero
at R = 0.4 cm. As a function of distance, the sum of the tensile
tangential and the compressive radial components (GT + or) should

. be constant, as indicated from the small variations found in the
measurements of the temperature dependence of longitudinal velocity
listed in Table (4.2). Values of this quantity determine the axial
component of the stress o_ which is equal to v(oT + or). The sum
of the tangential and the radial stress components are expected to
be small, as the value of (dVL/dT) listed in Table (4.2) are very

close to those measured on specimens D and E of Table (3.1) at

zero stress.

|
|
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I. Introduction

The general objective of this project is to develop further the
rational basis for electromagnetic methods of nondestructive evaluation,
particularly in relation to their use as means of gquantitatively charac-
terizing performance related properties of structural materials. Attention

is presently focused on eddy current methods and microwave methods.

II. Summary of Progress

Progress made to date is briefly summarized below. Further details
are presented in Appendices & and B which are the texts of technical
papers which have been or are to be submitted for publication in appropriate
journals or technical conference proceedings.

A. Eddy Currents

The main effort here has been in modelling mathematically the behavior
of an idealized one~turn coil carrying a harmonically time-varying current,
ir the presence of either a cylindrical conductive core or a planar conduc-
tive half-space. Tha aim here is to avoid reliance upon a "brute force"
numerical approach, but instead to find approximate analytic solutions
from which it is more straightforward to discern both the gqualitative and
quantitative effects of variations in the important parameters of the
situation, e.g., coil radius, frequency of the impressed current, lift-off,
and conductivity of the specimen. Although these problems are straight-
forward to formulate and formally solve as boundary value problems of the
vector notential, the resulting formal expressions are formidable integrals,
and the usual recourse is to evaluate them numerically for selected values
of the associated parameters. We have made an asymptotic expansion of a

factor of the integrand (essentially a reflection coefficient) which, while
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still requiring numerical evaluation of certain integrals which appear as
coefficients, does result in an analytic expression for the coil impedance
as a function of the major parameters of the problem. This expression is,
however, limited in validity to the case where skin Gepth is small compared
to coil radius or lift-off. Remedies for this restriction are presently
being researched.

Another topic being pursued is the calculation of the quantitative
effect of discrete flaws (voids of nonconducting inclusions) on the
vector potential. Applying the conventional formal theory of scattering
we obtain the relation

AR (D) = 3/ & EE L REnae

Ve

- ->
where A is the perturbed vector potential, A 1is the unperturbed vector

-+ . . R
r,r') is the (diadic)

(

o
potential (i.e., in the absence of the flaw)‘-—éo

Green's function for the unperturbed case, Ko is muoo, and Vf is the
volume of the flaw. The first step in the solution of this integral
equation is to obtain E:, which is the Green's function for a harmoni-
cally oscillating electric dipole inside the conductive specimen. To
the best of our knowledge this problem has not been solved, even approx-
imately, except in special cases (such as at points far from the dipole)

not applicable in the present case. We are continuing to work on this

problem.

.

B. Microwave Testing
To this point we have investigated the use of surface electromagnetic

waves (SEW) to determine the thickness and dielectric constant of a
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dielectric layer supported by a planar conductive substrate. Analysis
and experiments at approximately 10 GHz have established the feasibility

of this in the case where the dielectric material is "good," i.e., a
low-loss material. We consider that the only remaining problem in this
area is to extend the results to include dielectric materials with non-
negligible losses. (The application would be to structural metals with a
thin protective coating of dielectric material.) Also, when extended to
higher frequencies (e.g. 100 GHz), it may be possible to detect discrete
flaws in such dielectric coatings, and possibly to detect flaws in the

conductive substrate.

III. Plans for Future Work

A. Eddy Currents

Significant progress in the theory of eddy current NDE depends upon
attaining two objectives, both of which we shall work toward. First, a
better method of analytically approximating the gross coil impedance is
needed. We think that success here hinges upon finding a tractable repre-
sentation of the impedance "reflection factor" other than an asymptotic
power series. Some preliminary considerations of a variational approach
seem promising, and we shall pursue this route. Secondly, an adequate,
tractable approximation to the previously mentioned Green's function
must be found. This is not easy, even for idealized geometries. The
difficulty is that one needs the Green's function near the metal-air
interface and near the source (i.e., near the flaw) where it is difficult
to represent the Green's function by any simple approximation; both its
amplitude and phase change rapidly in the region of interest. A conven-

tional expansion in orthogonal functions runs into difficulty because

54

T s




many terms must be retained. A variational approach may succeed here
also, and we shall pursue this as well as anything else that suggests
itself. §
On the experimental side we plan to interface our three-channel
eddy current system with the newly installed College of Engineering
PDP-11/70 real-time computing system (using funds from other sources)

and to use it to test the validity of our theoretical work.

B. Microwave NDE

Work planned at 100 GHz has been delayed by long delivery times
or. essential components on order. (The 10 GHz work was undertaken
primarily because of this). Vendors now promise delivery early in 1980
and, this obtaining, we shall immediately undertake already planned

experiments on the scattering of 100 GHz waves by flaws in structural

dielectrics. 1In addition to basic scattering studies, we shall attempt

to image flaws by the synthesis of a large aperture using receiver

scanning and coherent detection techniques.
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IMPEDANCE OF A LOOP WITH A

3
‘ : CYLINDRICAL CONDUCTING. CORE*

S.A. Long, C.G. Gardner, A. Zaman, and S. Toomsawasdi
Electrical Engineering Department
University of Houston
Houston, Texas
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Abstract

The change in complex impedance between an ideal one-turn coil surround-

ing and coaxial with an infinitely long circular cylinder of conductivity
J and permeability u and a similar coil without the core has been calculated.
From the exact expression a power series in (§/b)(8 = skin depth; b = radius
of core) has been developed. From this result the change in impedance of a
physically realistic multi~-turn coil can be estimated with reasonable

' accuracy. The theory permits a rational approach to optimization of the
design of eddy current test coils and provides a basis for the later calcu-

lation of the effects of discontinuities in the core.

A2

s work was wupported in part by the U, 8. Alr Force Office of Scientific
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1. INTRODUCTION

A notable omission to the present body of knowledge dealing with eddy
current testing is the lack of an'adequate theoretical basis for the inter-
pretation of changes in the impedance of the test coil. This deficiency
remains, even though the fundamental theory is well established, owing to
the mathematical difficulties involved in solving the equations for practical
test-coil and specimen configurations. A complete solution in analytical
form seems to exist for oniy a few idealized cases which do not necessarily
approximate practical problems of current interest.

The program selected for study in this investigation is that of an
idealized one-turn coil (or loop) around and coaxial with a long, solid,

electrically conducting cylinder. This arrangement is illustrated in Figure 1

:

CONDUC TING
CORE—_| !

o N____

Figure 1 Loop with Cylindrical Core
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and shows the loop with radius a and the core with radius b and conductivity
U. The theoretical treatment will assume that the core is infinitely long.
(This approximation should producé very small errors as long as the distance
from the position of the loop to either end of the core is large compared
to the dimensions of the loop itself). This problem has the advantage of
being simple enough to permit a meaningful approximate solution to be found
while still corresponding to a practical eddy current testing situation.
The results show how the complex impedance of the test coil changes when a
cylindrical specimen is placed inside the loop and how this impedance is a

function of the geometrical and material parameters of the cylindrical core.

2. THEORY
A theoretical treatment of a geometrically similar problem has been

(1)

previously reported by Islam. In this work, however, the emphasis was

on the radiation properties of the configuration and thus only a high fre-
quency approximation was attempted for the case of a magnetically permeable
cylindrical core. The case of interest in this work, that of an electrically
conducting core at much lower frequencies, may be attacked in a similar
fashion but is essentially a completely different problem. From Maxwell's

equations for time-harmonic fields one may derive the wave equation for the

—-> >
magnetic vector potential A in terms of the impressed current density J.

Usiing Lhe standard cddy current approximation of neglecting the digplacement
current terms and recognizing that the vector potential has only a ¢ com-

ponent which depends on r and z, the left hand side of the equation becomes

TR AP N VIR IO AT e e e g
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Equating this expression to the source terms due to the loop current and
the induced eddy currents ome obtains the equation for the vector potential
in each of the regions shown in Figure 1.
- i - . >
BZA " . BZA u0106(2)6(a r); r>b
B T S S T I
2 r dr 2 2
dr r az
jwp0A¢ 5 r<b
where ko is the permeability of free space, io 1s the magnitude of the ii-
pressed loop current, w is the angular frequency of the time-harmonic fields,
and y and 0 are the permeability and conductivity of the core. The presence
of the impressed loop current at z=0, r=a is represented by the two S-functions.
The solution to tiie ~quation may be found using a cosine transform.
L [T
A (r,z) == [ g(r,k)cos kz dk
A \; TT
0
with the following functions defined for each of the three regioms.
* CLII[/(k2+jKZ)r] r<b
g(r,k) = Czll(kr)+C3Kl(kr) b<r<a
C,K fkr) r>a
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where Il and Kl are the modified Bessel functions of order one, KZ = Wwuo,

C

and C ‘2,‘3, and C4 are constants to be determined by the boundary condi-

1!

tions.

3 Since the quantity of primary interest $: the vector potential in the

vicinity of the loop, the simplest expression is that for Region III for

which only C, needs to be found from the standard boundary conditions.

4

kb Io(kb)ll(y)-rIO(Y)Il(kb)
ka 1, (K, (kb)+YL (V)K, (ka)

ija {Il(ka) + ] Kl(ka)}

4= Yo

b ol adii i ol e b
.

L where IO and KO are the modified Bessel functions of order zero and

y = ¢ (kb)z+j(Kb)2. Using this expression the value of A, along the loop

¢
at z=0, r=a can be found.
Wl a o, p i.a kb I (kb)I,(y)-vI.{(y)I, (kb)
070" ! 070 0 1 0 1
A (a,0) = ——— 1. (ka)K, (kr)dk + {“ { ]
o 1 Jo 1 1 ™ o kb Il(Y)KO(kb)+Y10(Y)Kl(kb)
j Ki(ka)dk

The first of these integrals can be shown to be exactly the contribution to
the vector potential due to the loop itself if the core were not present at

. all. (This term is singular in nature.) The second integral is the contri-

DL o et

bution due to the eddy currents and thus represents the difference in the

4 vector potential with and without the core present. This term now called
- AA, may be expanded as an asymptotic series.
. v
. 2 2
d poLa o 1 (kb)K| (ka) T(Y)K] (ka)
00 1 1 1
My = == - =gy kY T
0 1 0 Kl(kb)

’ (w Tz(y)kaO(kb)Ki(ka)
0

3
Kl(kb)
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where T(y) = ; IO(Y)

It should be noted that the dependence of AA  on the material parameters

$
b and 0 of the core is completely contained in the T(y) term. Using the

asymptotic series for the modified Bessel functions the following expressions

can be found.

T(Y) = % - —15 + ...
2y
and v = Jikb = (1+j) %

where the skin depth is given by § = 5%3' One may then divide the contri-

butions to A¢ into real and imaginary parts.

u.l a
200" ay  Léy o ay 16,3, a a
AA¢ = f—NO(b) + 2(b)Nl(b) 4<b) {Nz(b) + N3(b)]}
uoioa

1,¢ a 1,8,2.1 a a
5 {z(g)Nl(g) -3 5 NG TN,

+

L5y3 g (@ a
3G TN, Q) Ny ]

where the following integrals have been defined and are seen to be only a

function of the ratio a/b. (n = kb)

~ Il(n)Ki(n %)

N(2) = | dn
VR PR D)
2 a
Ki(n T
N = r L2~ 4
0 Kl(n)
2 a
@) - (°° nKo r1)l(l(rl g) ¢
2% 3 n
0 Kl(n)




2 2 a
T Ko(n)Kl(n g)

dn

N(~a—)=f
3b 0 Ki(n)

The apparent change in the driving point impedance of the loop is

jw AA, 2ma
AZ=AR+ijL=—~‘.‘£’—~

i
0
From the previous expressions the changes in inductance and resistance can
be found to third order in §/b.
2
1

L@ - 1N A + 1D N,E + 8@

2
$
B = Zug 4 {%(E)Nl(s) - %(_g_)z[% NG TN %(Ed)%Nz(%)

+

a
N3(g]}

To obtain numerical values for AL and AR it is first necessary to evaluate

the integrals N N, and N.,. Although they cannot be evaluated analy-

N
0’ "1’ 2 3
tically they can be found numerically for fixed values of the geometrical
parameter a/b. Once these integrals are evaluated the expressions are each
seen to be a power series in the parameter &/b which contains the electrica.

properties of the core material. One should note that for the case of a

perfectly conducting core (i.e. &/b = 0)

~2y.a
-0 a
AL = v Nc(b)

and AR = Q.
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This is a reasonable result which shows a decrease in the inductance but no

change in the resistance since no losses are possible. The effect of a

- . large but finite conductivity is seen to diminish the amount of decrease
found for the perfectly conducting case and to add a finite, positive ap-

parent resistance.

it e o

3. RESULTS

To facilitate the evaluation of AL and AR for practical cases the in~

tegrals N_, N N2, and N_ were evaluated for several values of a/b varying i

0’ "1’ 3
from a value of 1.05 to 2.0. Using these results the values of AR and AL

YT T T TN T ETY

can be calculated through terms of order (6/b)3. Accuracy of the results
depends critically on the assumption that §/b remains small with respect

to one.

For the case of an aluminum core with a 3/4" diameter we find 6 = .0826 //E
; which for f = 50 KHz yields a skin depth & = 0.37 mm resulting in a value
E of &/b = .0388. Thus for this practical case we are well within the assump-

tions used in the derivations.

To generalize the results somewhat the normalized quantities AR/wpa
and AX/wpa have been plotted in the remaining figures (AX = wAL). It should
N be noted that each of these quantities are unitless. The most obvious
graphical presentations would be those of AR and AL versus the geometrical
parameter a/b and the material parameter &/b. Unfortunately this direct
- approach does not correspond to the usual parameters which may be subject

to change. Assuming that the practical testing situation consists of a

cylindrical sample moving through a fixed coil the quantities which may

! change are actually the radius of the core b and the conductivity of the

core material 0. To illustrate the changes in impedance for variations in
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b about a nominal radius by, the graphs in Figures 2 and 3 are shown. In
Figure 2 the normalized change in resistance is shown versus the quantity
b/bg. The nominal radius b0 may be any value as long as our restriction
of 8/bg << 1 is satisfied. The value of a/by = 1.25 was chosen to be re-
pres.... .tive of a real coil design which couples strongly with the core.
A fz. .1ly of curves is also shown for several values of Glbo. It is noted
that all the curves approach zero as b/bo is decreased and become very
large as b/b; approaches 1.25 which is the position of the driving loop.
A similar set of curves is shown in Figure 3 for the change in reactance.
Again as expected the change in reactance approaches zero as the core fadius
decreases and becomes a very large negative value for b/b0 near 1,25, It
should be noted that changes in the parameter §/bg have a relatively small
effect on AX as compared to their effect on AR. The same functional de-
pendence is also illustrated in Figure 4. The solid curves show the nor-
malized resistance plotted versus the normalized reactance as b/b0 is varied.
Changes in the complex impedance can be seen for varying radii for each of
four values of G/bo.

The effect of changes in conductivity of the core on the resistance
and the reactance are shown in Figures 5 and 6. The conductivity is again
normalized with respect a OO near that of aluminum. (However, 00 is actually
arbitrary as long as the condition that &/b << 1 is still satisfied). The
limiting behavior is again logical showing the resistance approaching zero
for large conductivities and zero for very small values. The reactance 1s
seen to approach the "perfect conductor” case as 0 increases. The reglon
where o becomes small violates the assumption on §/b and therefore the be-

havior of these curves ther has no meaning. The resistance versus the
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Figure 3 Normalized Reactance Versus Core Radius
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Figure 7 Resistance Versus Reactance as Conducting Changes
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reactance is shown in the solid lines of Figure 7. As the conductivity de- i
creases from the perfect conductor case AR is seen to increase while AX be-
comes less negative, Each of these curves terminates in the region where
the assumptién that §/b << 1 begins to break down.

With the aid of Figures 4 and 7 one may ascertain the behavior of changes

-—4-'~“-,m
-

in both the resistance and reactance for any percent change in either the
radius of the core or its conductivity. The functional change in impedance
is quite different for the two parameters. This characteristic may therefore

be utilized in practical testing to determine changes in sample radius and

conductivity. l
;
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APPENDIX B

The Impedance of a Single-Turn Coil Near

A Conducting Half-Space

Afroz J. M. Zaman, Stuart A. Long and C. Gerald Gardner
Department of Electrical Engineering
University of Houston
Houston, Texas 77004

Abstract

The change in complex impedance between an ideal one~turn circular
coil located above and parallel to a conducting half-space with respect

to a similar isolated coil has been calculated. From this result a

series expansion of the integrand allows the solution to be approximated
by terms expressed as complete elliptic integrals., Results have been
calculated for the change in impedance as a function of the 1lift-off
distance and the conductivity of the half-space for a coil of represen-

tative radius.

This work was supported in part by the U, S. Alr Force Office of Scientific
Research through Grant No. 77~3457.
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I. INTRODUCTION

The eddy current method of nondestructive evaluation entails the in-
duction of eddy currents in a conductive test object by a time-varying
field produced by a suitable distribution of impressed currents (via an

excitation or primary coil), and the detection of the resultant field,

usually by an inductive search coil which may be either a separate
secondary coil or the p}imary coil itself. (See Figure 1.) The method
is ordinarily used at frequencies sufficiently low to neglect effects
due to displacement current; hence a theoretical analysis entails calcu-
latiug either a transfer impedance for a primary coil and secondary coil
in the piesence of the test object, or the calculation of the self
impedance of a primary coil in the presence of the test object. In
practice one often needs only the change in impedance produced by the
test object or by changes in the nominal properties of the test object
(¢.g. changes in its geometry or position with respect to the test coil
or coils, or distributed or localized changes in the resistivity of the
test object). The most general case, allowing arbitrary configurations
of primary and secondary coils and arbitrary test objects can be handled
only by numerical methods. Certain idealized arrangements can be treated
analytically either exactly or in useful approximation. In virtually all
cases of practical interest, the analysis eventually reduces to the
evaluation of certain integrals which cannot be expressed in closed form
in terms of standard transcendental functions,

In this paper we discuss the case of a one-turn circular coil located

above and parallel to the surface of a homogeneous conductive half-space.

From the standard boundary value problem approach we obtain the general
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expression tor the change in coil impedance, AZ, produced by the half-space;
Al is given in terms of an integral over a separation parameter. A series
expansion of one term in the integrand permits the integral to be expressed
as a series of terms each of which is expressible in terms of complete
elliptic integrals. The leading terms of this series approximate AZ
asymptomatically for sufficiently small values of skin depth of the half-
space.

The problem addressed here has previously been treated by Cheng [1]
who evaluated AZ by numerical methods for various choices of the relevant
parameters. Similarly, Dodd and Deeds [2] have devised a digital computer
program capable of handling circular test coils in the presence of layered
planar and coaxial cylindrical test objects. Such brute force numerical
procedures are valuable for design purposes, but have the disadvantage of
somewhat concealing the essentially simple manner in which the final result
depends upon the parameters of the problem. The approach taken here,
while less universal than the purely numerical approach; results in re-
latively simple, though approximate and restricted, formulas for AZ in
terms of the basic parameters of the problem.

For illustrative and comparative purposes, some selected numerical

examples are also given,
I1. Theoretical Analysis

The basic geometry of the problem is shown in Figure 1 and consists
of a loop ol radius L oriented parallel to and at a distance & above a
homogencous half-space of conductivity 0. Beginning with the basic equa-

tion tor the vector potential




§(r, ~r) 3

, 2 0
7 = - —
VA + K A upI(t) .

§(L-2) 1)

and noting the symmetry of the problem, it is seen that the only component

of the vector potential present is the circumferential component, A,, and

¢

that A¢ is a function of r and z only. Making the usual low-frequency,

. . . . 27
gquasi-static approximation that the k"A term 18 negligible for z>0, we have:

2 2
9°A JA 3°A A

Ve —b el b, & 05 gor 250 (2)

2 r or 2 2
or 1} r
. 2 -
and, with k™ = -jwuo for 2z<0
2 2

37A JdA 3 A A

¢ + —»—~JE<+-*~J£ - b jwucA, = 0 for z<0 (3)

8r2 r 322 r2 o

Solving by the separation of variables technique yields the following
evpression for the general solution to Equations (2) and (3).

0

A (x,2) = J [A(a)eaz+B(a)e_uz][C(a)Jl(ar)+D(u)Yl(ar)]da %)
0

where « is the separation constant. Since z may become infinitely large

in the regicn z»%, the coefficient A(a) must equal zero. Similarly in the

repion z<0 B(w) must also equal zero, and since the origin is included in

all regions, then D(u) must equal zero in each.

Ly = ’ , Uz >L>
A¢L(1,z) jo ulg Jl(ur)da z>4>0 (5)

Ay (rin) = [ [Czo“’+uzc—uZ}Jl(ar)da 2>2>0 (6)
: 0]
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: 1
A¢3(r,z) = JO Cje Jl(ar)da z<0 (7)

where ai = a2+jmuo.

Since the electric field is proportional to A the boundary conditions

¢’
for the tangential electric field can be satisfied by equating the values

of A¢ at the z = { plane.

B.e % (aryda = | (¢ e™+B e ) (ar)da (8)
0 1 1 2 2 1
0
Multiplying both sides by the integral operator [ {...}Jl(a'r)rdr and using
0

the Fourier-Bessel identity [3]

o .
3, @I (' Drdr = Rlaild (9)
0
gives the following result:
-a's
B e C " B ot
el T (10)
or
Blu—_ag = (:Ze'“‘ + )e-uﬁ (11)

The radial component of the mapnetic field can alsc ve tound from the vector

d . . o
potentialy U = - 92 Ap. HI is discontinuocus at the position ol the loop
r L .

(r=r0, z=%) by an amount equal to the surface current density there.
3 3
]

(=52 A1 ¥ 5 M2 = W 8(r-ry) (12)

z={




vy

or
-B.e =C,e - B.e L Ir, J. (ar,.) 13
ulrgd, o, (

Similarly the boundary conditions may also be applied at z = 0 where bo
E and Hr are continuous, yielding

¢

C.+B,=C (14,

and c, - B, = C (15
These four Equations (11, 13, 14 and 15) can then be solved for the con

Bl’ CZ’ Bz, and C, and used in Equations (5), (6), and (7) to e “.uate

3
vector potential.

Since our principle interest lies in evaluating the vector potenti:

at the location of the loop the most direct route is to evaluate the co

stant Blz
%
ulr J_ (ar.) _ a--—)
B = 071 0 [eak +e al o ] (16
1 2 al
1+ a—)
Thus
nir o0 o-Q
_ 0 (—oz-al) , +2ak 1
A¢6r,z) =y (0 Jl(urO)Jl(ur)c [e +(a«ul)]da (17

The Lwo terms in the square brackets represent respectively the vector
potential due to the loop itself and that due to the currents induced i

the conducting plane. This second term due to the conductive half-spac
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will produce the change in impedance from the case of the isolated loop

to the case of the loop near the plane. This change in vector potential i

is thus given by this second term.

ulr a-Q
-0 —a(z+L) 1
AA¢l(r,z) = [: Jl(arO)Jl(ar)e (a+al

)da (18)

This change in vector potential can be used to calculate the change in
impedance due to the presence of the conductor by integrating the tangential

e¢lectric field around the position of the loop:

-§ 8k - df

2nr
AZ = —3 T Jw g AA¢1(IO,Q) (19)
> ~ E
since AE = —JwAA¢l ¢.
w o0t
g = el 2 -2ul 1
YA W IO Jl(aro)e (aIaI)da (20)

The integrand factor (a-al)/(u+al), essentially a reflection factor, has
modulus equal to or less than unity, the extreme value being assumed for

=0 and a=x, The integrand factor Ji(aro) guarantees that the value of

the integral is negligibly affected by values of o greater than about, lO/rO.

-2
Practical values of r. are usually of the order of 10 "m. For such values

0
of Ty the important range for o is Oiqilojm—l, while the quantity wuoo

7
|= 2/(skin depth)z] is, in many practical cases, of the order of 10" (e.g.,

tor aluminum at 50 KHz, wuoo = l.SX1O7). For such cases, az/wuoo < 0.1,

and (w—u')(u+u|) way be expanded as a power sgeries in a/ﬁ&i}; :




‘.

L e 2 Sl (-5 (ad) + §(ad) ...

where § = /E/ng, and K = (T
We expect the series above to converge rapdily provided ad<<l, As we

shall presently show, it is convenient to adopt ro as a characteristic

length. Since the value of AZ is determined almost entirely by values of

a for which aroilo, we have rapid convergence of the integrated series if

6/r0<<l/10. Separating AZ into real and imaginary parts we have:

AZ = AR + jAX (22)
[~ - -
AX = —umnrz{ Jz(ar Ye 20L‘z‘dm - 6J2(ar Ye 2(]‘Rcztdm} (23)
670", "1"%0 o 1%0
AR = umﬂrz{fn dJZ(ar )e—zagada - J GZJz(ar )e-zalazda} (24)
o 0y T1T0 o L0

These changes in resistance and reactance can be represented by three in-

tegrals:
£X = =muyg, (1,(8) - (f—(;nz(s)) (25)
ac= g, (1,8 - E9Te) (26)
8] 0
where
P2/, (27)

and
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: 2 -Bx
1@ = r Ji(x)e "Tdx (28)
0
L@ = - $21(8) (29)
2 dB
. d2
13(8) = 11(8) (30)
dg
Il(B) is just the Laplace transform of Ji(x) (4]:
L 1 1,2
11(3) 1/2(1 + 5 B7) (3L
L where Ql/2 is the Legendre function of the second kind of order 1/2.
12(8) is therefore given by
L@ =-Lq ,a+36h (32)
2 m 1/2
where the prime indicates differentiation with respect to the argument.
The required derivative may be found from the recursion relation [5]
(P-1a) (0 = (1) = 2, (33)
1/2 l/2 1/2

For convenience in evaluation, both Q1/2 and Q-l/Z may be expressed

in terms of complete elliptic  integrals [5]:

‘s

N TR L: 1/2. ¢ 2 \1/2 ,
Q00 = x ) TR - 20y HEE (YT (30

1
Q00 = G ki) (35)




9
where K(k) and E(k) are respectively the complete elliptical integrals of

the first and second kind of modulus k:

w2 . *
K(K) = J (1-k%sin%t) 1/ 24¢ (36) ‘

0

/2 !
E(K) = f (1-kZsine)t 24e (37)

0

Values of K(k) and E(k) may be obtained from standard tables or from readily
available computer software.

LB(B) may likewise be reduced to an expression involving K(k) and E(k).
However, for most practical cases, the factor (G/ro)2 by which 13(8) is
multiplied is so small that the contribution toAR from the term proportional

to [3(8) is negligible.
I11. Results

To illustrate the changes in impedance as a function of the lift-off
distance £ and the conductivicy 0, calculations were made for a loop of

radius rO = 1.27 cm (diameter of one inch) at distances % from .05 to 1.5

7
cw, and for conductivities from (0.1 to 4 times that of aluminum (0, = 3.8x10

0

mho/ny.  These results are shown in Figures 2 and 3 as a function of 2 for

various constant conductivities. The normalized dimensionless changes in

impedance AX/wurO and AR/murO are chosen as the quantities to be plotted.

For all values of conductivity the value of AX/wurO is seen to approach a
larpe neypative value as € decreases showing the known decrease in total

inductance as the loop approaches the plane. As £ becomes large AX/wurO

approaches zero as required. Similarly in Figure 2 AR/wur, is seen to give

0

a large positive contribution for small £ and approaches zero as £ becomes




oy ; . " 8 P - a5 v s
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large. i
: To illustrate the effects of the conductivity on the changes in impe- i
dance for several constant values of lift-off.the results for the same loop |
are shown in Figures 4 and 5. The change in reactance Ax/wuro is seen to
. be very nearly independent of conductivity over the range considered. The

value of AR/wur however, is seen to increase for lower values of o. This

0’
resistance term, of course, approaches zero as the conductivity approaches
that of a perfect conductor.

Both the variations in resistance and reactance can be combined into
the one graph shown in Figure 6 by plotting AX versus AR. The solid lines
thus show the change in impedance as the lift-off is changed, while the
dashed lines show the variation with changing conductivity for constant

. lift-off &.

The limiting values of AX/wur, for large values of ¢ can be checked

0

bv comparing the calculated values with that of the case of a loop above

a perfectly conducting plane. Using image theory the mutual inductance

between two identical loops located a distance 2£ apart can be calculated
[6]:
 ° M = 2.54 Nro
where N is a tabulated function of r, and £. The values of M and AL at
3
< 50 Khz are compared in Table ) and quite good agreement is found.

.,

IV. Conclusions

-

For the commonly occurring case where 6<<0.1 Ty the change in coil

inductance is essentially the value that would occur if the substrate were
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perfectly conductive; AL is thus dominated by its dependence on lift-off.

The change in resistance is, for constant lift-off, proportional in first

order to skin depth (or, for constant frequency, proportional to the

square root of substrate conductivity); however, AR is also strongly de~-

pendent upon lift-off. Second-order changes in AL and AR, due to small

variations in £ and 0 about nominal values, are well approximated by linear

functions of A? and A7, hence variations in AL and AR may readily be "

interpreted in terms of corresponding variations in lift-off conductivity.

e et
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List of Captions

Figure 1 Geometrical configuration of loop near a conductor.
Figure 2 Change in normalized resistance versus lift-off distance,
Figure 3 Change in normalized reactance versus lift-off distance.
Figure 4 Change in normalized resistance versus conductivity.
Figure 5 Change in normalized reactance versus conductivity.
Figure 6 Change in reactance versus change in resistance.

Table 1 Comparison of theoretical change in inductance to mutual

inductance for perfect conductor case.
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TABLE 1
L AL M
AX
(cm) e (uH) (uh) {
0

2.5 1.0887 .01737 .01727

5.0 .5425 . 00866 .00869
15.0 .07784 .00124 .00114
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